Fractional Helly theorem for the diameter of convex sets

نویسنده

  • Silouanos Brazitikos
چکیده

We provide a new quantitative version of Helly’s theorem: there exists an absolute constant α > 1 with the following property: if {Pi : i ∈ I} is a finite family of convex bodies in R with int (⋂ i∈I Pi ) 6= ∅, then there exist z ∈ R, s 6 αn and i1, . . . is ∈ I such that z + Pi1 ∩ · · · ∩ Pis ⊆ cn 3/2 ( z + ⋂

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A fractional Helly theorem for convex lattice sets

A set of the form C-Z ; where CDR is convex and Z denotes the integer lattice, is called a convex lattice set. It is known that the Helly number of d-dimensional convex lattice sets is 2 : We prove that the fractional Helly number is only d þ 1: For every d and every aAð0; 1 there exists b40 such that whenever F1;y;Fn are convex lattice sets in Z such that T iAI Fia| for at least að n dþ1Þ inde...

متن کامل

Berge's theorem, fractional Helly, and art galleries

In one of his early papers Claude Berge proved a Helly-type theorem, which replaces the usual “nonempty intersection” condition with a “convex union” condition. Inspired by this we prove a fractional Helly-type result, where we assume that many (d+1)-tuples of a family of convex sets have a star-shaped union, and the conclusion is that many of the sets have a common point. We also investigate s...

متن کامل

Functionally closed sets and functionally convex sets in real Banach spaces

‎Let $X$ be a real normed  space, then  $C(subseteq X)$  is  functionally  convex  (briefly, $F$-convex), if  $T(C)subseteq Bbb R $ is  convex for all bounded linear transformations $Tin B(X,R)$; and $K(subseteq X)$  is  functionally   closed (briefly, $F$-closed), if  $T(K)subseteq Bbb R $ is  closed  for all bounded linear transformations $Tin B(X,R)$. We improve the    Krein-Milman theorem  ...

متن کامل

Bounded VC-Dimension Implies a Fractional Helly Theorem

We prove that every set system of bounded VC-dimension has a fractional Helly property. More precisely, if the dual shatter function of a set system F is bounded by o(m k), then F has fractional Helly number k. This means that for every > 0 there exists a > 0 such that if F 1 ; F 2 ; : : : ; F n 2 F are sets with T i2I F i 6 = ; for at least ? n k sets I f1; 2; : : :; ng of size k, then there e...

متن کامل

A Short Proof of an Interesting Helly-Type Theorem

We give a short proof of the theorem that any family of subsets of R with the property that the intersection of any non empty nite subfamily can be represented as the disjoint union of at most k closed convex sets has Helly number at most k d

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015